

## ANANDALAYA PERIODIC TEST 2 Class : XI

M.M: 40 Time: 2 Hours

| G                                                        |                                                                                                                                                                                                                  |                                               |     |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|--|--|
|                                                          | neral Instructions:                                                                                                                                                                                              |                                               |     |  |  |
|                                                          | <ol> <li>All questions are compulsory.</li> <li>Marks for each question are indicated against it.</li> </ol>                                                                                                     |                                               |     |  |  |
|                                                          | <ol> <li>Warks for each question are indicated against it.</li> <li>Section A: Question numbers 1 to 10 are very short answer questions, carrying 1 mark each.</li> </ol>                                        |                                               |     |  |  |
|                                                          | <ol> <li>Section A: Question numbers 1 to 10 are very short answer questions, carrying 2 marks each.</li> <li>Section B: Question numbers 11 to 14 are short answer questions, carrying 2 marks each.</li> </ol> |                                               |     |  |  |
|                                                          | 5. Section C: Question numbers 15 to 18 are short answer                                                                                                                                                         |                                               |     |  |  |
|                                                          | <ol> <li>Section D: Question numbers 19 &amp; 20 are long answer questions carrying 5 marks each.</li> </ol>                                                                                                     |                                               |     |  |  |
|                                                          |                                                                                                                                                                                                                  |                                               |     |  |  |
|                                                          | SECTION A                                                                                                                                                                                                        |                                               |     |  |  |
| Read the given passage and answer questions that follow: |                                                                                                                                                                                                                  |                                               |     |  |  |
|                                                          | The Haber's process for synthesis of ammonia from nitrogen and hydrogen is represented by                                                                                                                        |                                               |     |  |  |
|                                                          | following chemical equation:                                                                                                                                                                                     |                                               |     |  |  |
|                                                          | $N_2(g) + H_2(g) \rightarrow 2NH_3(g), \Delta H = -92.6 \text{ KJ/mol.}$                                                                                                                                         |                                               |     |  |  |
|                                                          | The reaction is carried out in presence of a catalyst iron.                                                                                                                                                      | The value of $K_c$ for the reaction is 1.2 at |     |  |  |
|                                                          | 375 <sup>°</sup> C. Answer the following questions:                                                                                                                                                              |                                               |     |  |  |
| 1.                                                       | What is the affect of presence of catalyst on the yield of                                                                                                                                                       | ummonia?                                      | (1) |  |  |
| 1.                                                       | What is the effect of presence of catalyst on the yield of ammonia?                                                                                                                                              |                                               | (1) |  |  |
| 2.                                                       | How does the value of $K_c$ for this reaction change with change in temperature?                                                                                                                                 |                                               | (1) |  |  |
| 3.                                                       | Write the expression for equilibrium constant for this reaction.                                                                                                                                                 |                                               | (1) |  |  |
| 4.                                                       | For the process to occur under adiabatic conditions, the correct condition is:                                                                                                                                   |                                               | (1) |  |  |
|                                                          | (a) $\Delta T = 0$ (b) $\Delta$                                                                                                                                                                                  |                                               |     |  |  |
|                                                          | (c) $w = 0$ (d) q                                                                                                                                                                                                | = 0                                           |     |  |  |
| 5.                                                       | The enthalpies of all elements in their standard states are:                                                                                                                                                     |                                               | (1) |  |  |
|                                                          | (a) unity (b) <                                                                                                                                                                                                  |                                               | (-) |  |  |
|                                                          | •                                                                                                                                                                                                                | fferent for each element                      |     |  |  |
| 6.                                                       | The colourless solution of silver nitrate slowly turns blue on adding copper chips to it because of                                                                                                              |                                               |     |  |  |
| 0.                                                       | •                                                                                                                                                                                                                | kidation of copper atoms                      | (1) |  |  |
|                                                          | 11                                                                                                                                                                                                               | xidation of silver ions                       |     |  |  |
| 7.                                                       | Determine the oxidation state of C in $HCO_3^-$ .                                                                                                                                                                |                                               | (1) |  |  |
| 8.                                                       | Which chemical species is the oxidising agent in the following reaction:                                                                                                                                         |                                               | (1) |  |  |
|                                                          | $N_2H_4(l) + 2H_2O_2(l) \rightarrow N_2 + 4H_2O(l)$                                                                                                                                                              |                                               |     |  |  |
| 9.                                                       | is the chemical process in which oxidation i                                                                                                                                                                     | umber of the element decreases.               | (1) |  |  |
|                                                          | In the following question a statement of Assertion (A) followed by a statement of Reason (R) is                                                                                                                  |                                               |     |  |  |

given. Choose the correct option out of the choices given below the question.

|           | (d) A is false but R is true.                                                                                                                                                                                                                                                                                                     |     |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| SECTION B |                                                                                                                                                                                                                                                                                                                                   |     |  |  |
| 11.       | Calculate work done when a gas is compressed by an average pressure of 0.50 atm so as to decrease its volume from 800 cm <sup><math>3</math></sup> to 600 cm <sup><math>3</math></sup> .                                                                                                                                          | (2) |  |  |
| 12.       | For the reaction, $2Cl(g) \rightarrow Cl_2(g)$ , what are the signs of $\Delta H$ and $\Delta S$ ? Explain.                                                                                                                                                                                                                       | (2) |  |  |
| 13.       | <ul> <li>(a) The reaction quotient of a reversible reaction is Q<sub>c</sub> and the equilibrium constant is Kc. In which direction will the equilibrium shift if Q<sub>c</sub>&lt; K<sub>c</sub> ?</li> <li>(b) The solubility of ZnS is 1.04 X 10<sup>-6</sup>. Find out its solubility product at this temperature.</li> </ul> | (2) |  |  |
| 14.       | While sulphur dioxide can act as an oxidising as well as reducing agent in its reactions whereas ozone act only as an oxidant. Why?                                                                                                                                                                                               | (2) |  |  |
| SECTION C |                                                                                                                                                                                                                                                                                                                                   |     |  |  |
| 15.       | <ul> <li>In a galvanic cell Cu/Cu<sup>2+</sup> // Ag<sup>+</sup>/ Ag:</li> <li>(a) What is the net cell reaction?</li> <li>(b) Which metal act as negative electrode?</li> <li>(c) What is the direction of flow of conventional current?</li> </ul>                                                                              | (3) |  |  |
| 16.       | <ul> <li>(a) Write the conjugate acid and base of HSO<sub>4</sub><sup>-</sup>.</li> <li>(b) Calculate the pH of 3.0 g of NaOH dissolve in water to give 200 ml of the solution. OR</li> </ul>                                                                                                                                     | (3) |  |  |
|           | What is the equilibrium concentration of each of the substances in the following equilibrium when                                                                                                                                                                                                                                 |     |  |  |
|           | the initial concentration of ICl was 0.78 M?                                                                                                                                                                                                                                                                                      |     |  |  |
|           | $2ICl(g) \rightarrow I_2(g) + Cl_2(g); K_c = 0.14$                                                                                                                                                                                                                                                                                |     |  |  |
| 17.       | <ul> <li>(a) What is a disproportionation reaction? Give an example.</li> <li>(b) Balance the following redox reaction in acidic medium:<br/>Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> (aq) + SO<sub>2</sub> (g) → Cr<sup>3+</sup>(aq) + SO<sub>4</sub><sup>2-</sup> (aq)</li> </ul>                                               | (3) |  |  |
| 18.       | Explain the following terms:<br>(a) Isolated system<br>(b) Entropy                                                                                                                                                                                                                                                                | (3) |  |  |

(c) State function

10.

Assertion (A): All Arrhenius acids are also Bronsted acids.

(a) Both A and R are true and R is the correct explanation of A.(b) Both A and R are true but R is not the correct explanation of A.

Reason (R): All Arrhenius bases are also Bronsted bases.

(c) A is true but R is false.

## SECTION D

(a) Which of the following reactions will get affected by increasing the pressure? Also, mention (5) whether change will cause the reaction to go into forward or backward direction.
(i) COCl<sub>2</sub> (g) → CO (g) + Cl<sub>2</sub> (g)
(ii) CH<sub>4</sub> (g) + 2S<sub>2</sub> (g) → CS<sub>2</sub> (g) + 2H<sub>2</sub>S (g)

(5)

- (b) What are polyprotic acids? Explain with an example
- (c) At 450 K,  $K_p = 2.0 \times 10^{10} \text{ bar}^{-1}$  for equilibrium reaction:  $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ What is  $K_c$  at this temperature. [ R= 0.083 L bar K<sup>-1</sup>mol<sup>-1</sup> ]
- 20. (a) What is the difference between extensive and intensive properties?
  - (c) When  $\Delta H > 0$  and  $\Delta S < 0$ , a reaction is never spontaneous. Why?
  - (d) Consider the following two reactions:  $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g) \quad \Delta H = -26.8 \text{ kJ}$   $FeO(s) + CO(g) \rightarrow Fe(s) + CO_2(g) \quad \Delta H = -16.5 \text{ kJ}$ What is the value of  $\Delta H$  for the reaction:  $Fe_2O_3(s) + CO(g) \rightarrow 2 FeO(s) + CO_2(g)$ 
    - OR
  - (a) State Hess's law of Constant Heat Summation.
  - (b) The equilibrium constant for a reaction is 10 at 27°C. Calculate the value of  $\Delta G^0$  at 27 °C. (R = 8.314JK<sup>-1</sup>mol<sup>-1</sup>)
  - (c) Calculate the standard enthalpy change and standard internal energy change for the following reaction at 300 K:

 $OF_2(g) + H_2O(g) \rightarrow O_2(g) + 2HF(g)$ 

Given that the standard enthalpy of formation of  $OF_2$ ,  $H_2O$  and HF are - 23 kJ mol<sup>-1</sup>, -241.8 kJ mol<sup>-1</sup> and -268.6 kJ mol<sup>-1</sup> respectively.